Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(24): 5744-5758, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37592814

RESUMO

Errors made by DNA polymerases contribute to both natural variation and, in extreme cases, genome instability and its associated diseases. Recently, the importance of polymerase misincorporation in disease has been highlighted by the identification of cancer-associated polymerase variants with mutations in the exonuclease domain. A subgroup of these variants have a hypermutation phenotype in tumours, and when modelled in yeast, they show mutation rates in excess of that seen with polymerase with simple loss of proofreading activity. We have developed a bypass assay to rapidly determine the tendency of a polymerase to misincorporate in vitro. We have used the assay to compare misincorporation by wild-type, exonuclease-defective and two hypermutating human DNA polymerase ε variants, P286R and V411L. The assay clearly distinguished between the misincorporation rates of wild-type, exonuclease dead and P286R polymerases. However, the V411L polymerase showed misincorporation rate comparable to the exonuclease dead enzyme rather than P286R, suggesting that there may be some differences in the way that these variants cause hypermutation. Using this assay, misincorporation opposite a templated C nucleotide was consistently higher than for other nucleotides, and this caused predominantly C-to-T transitions. This is consistent with the observation that C-to-T transitions are commonly seen in DNA polymerase ε mutant tumours.


Assuntos
DNA Polimerase II , Neoplasias , Humanos , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Mutação , Neoplasias/genética , Exonucleases/genética , Exonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética
2.
Genome Res ; 32(4): 682-698, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354608

RESUMO

The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Cromatina/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo
3.
Genes Cells ; 26(4): 219-229, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556205

RESUMO

In eukaryotes, specific DNA-protein structures called telomeres exist at linear chromosome ends. Telomere stability is maintained by a specific capping protein complex. This capping complex is essential for the inhibition of the DNA damage response (DDR) at telomeres and contributes to genome integrity. In Drosophila, the central factors of telomere capping complex are HOAP and HipHop. Furthermore, a DDR protein complex Mre11-Rad50-Nbs (MRN) is known to be important for the telomere association of HOAP and HipHop. However, whether MRN interacts with HOAP and HipHop, and the telomere recognition mechanisms of HOAP and HipHop are poorly understood. Here, we show that Nbs interacts with Mre11 and transports the Mre11-Rad50 complex from the cytoplasm to the nucleus. In addition, we report that HOAP interacts with both Mre11 and Nbs. The N-terminal region of HOAP is essential for its co-localization with HipHop. Finally, we reveal that Nbs interacts with the N-terminal region of HOAP.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endodesoxirribonucleases/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Drosophila/química , Ligação Proteica , Transporte Proteico
4.
J Cell Sci ; 127(Pt 14): 3066-78, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24806961

RESUMO

In human cells, appropriate monomethylation of histone H4 lysine 20 by PrSet7 (also known as SET8 and SETD7) is important for the correct transcription of specific genes and timely progression through the cell cycle. Over-methylation appears to be prevented through the interaction of PrSet7 with proliferating cell nuclear antigen (PCNA), which targets PrSet7 for destruction through the pathway mediated by CRL4(C) (dt2) (the cullin ring finger ligase-4 complex containing Cdt2). However, the factors involved in positive regulation of PrSet7 histone methylation remain undefined. Here, we present biochemical and genetic evidence for a previously undocumented interaction between Drosophila PrSet7 (dPrSet7) and DNA polymerase α in Drosophila. Depletion of the polymerase reduces H4K20 monomethylation suggesting that it is required for dPrSet7 histone methylation activity. We also show that the interaction between PCNA and PrSet7 is conserved in Drosophila, but is only detectable in chromatin fractions. Consistent with this, S2 cells show a significant loss of chromatin-bound dPrSet7 protein as S phase progresses. Based on these data we suggest that interaction with the DNA polymerase represents an important route for stimulation of PrSet7 histone methylase activity that is mediated by allowing loading of dPrSet7 onto chromatin or its subsequent activation.


Assuntos
DNA Polimerase I/metabolismo , Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA Polimerase I/química , DNA Polimerase I/genética , Drosophila/química , Drosophila/genética , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética
5.
PLoS One ; 7(11): e49505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166690

RESUMO

The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD--consistent with the presence of DNA damage and increased apoptosis.Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or H2O2 treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific.Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways.


Assuntos
Replicação do DNA , Drosophila/genética , Drosophila/metabolismo , RecQ Helicases/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Drosophila/efeitos da radiação , Ativação Enzimática , Etoposídeo/farmacologia , Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Mutação , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RecQ Helicases/química , RecQ Helicases/genética , Fase S/efeitos da radiação
6.
J Cell Sci ; 125(Pt 4): 965-72, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421364

RESUMO

Origins of replication in higher eukaryotes appear to lack specific sequence characteristics and those mapped often appear to be spread over several kilobases. This has complicated the study of site-specific events at origins of replication in vivo. Here we show that fusion of a Gal4-binding domain to proteins of the origin of replication complex (Orc) is sufficient to direct initiation to Gal4-binding sites inserted in the Drosophila S2 cell chromosome. The activation appears to go via an authentic route, taking place only in the S phase of the cell cycle and involving the formation of a prereplication complex. We have also shown that the origin-associated acetylation of histone H4 at K12 can be directed to the region of Orc binding by the presence of Orc. We expect that this system can provide a useful tool for the study of site-specific events at origins of replication in higher eukaryotes and a means to dissect Orc-dependent and Orc-independent events at origins.


Assuntos
Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Replicação do DNA/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Acetilação , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Plasmídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
PLoS One ; 6(11): e27101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102875

RESUMO

A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/genética , Replicação do DNA , Proteínas de Drosophila/metabolismo , Drosophila/genética , Hidroxiureia/farmacologia , Animais , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Citometria de Fluxo , Humanos , Componente 6 do Complexo de Manutenção de Minicromossomo , Proteínas de Manutenção de Minicromossomo , Inibidores da Síntese de Ácido Nucleico/farmacologia
8.
PLoS One ; 3(3): e0001737, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18320024

RESUMO

BACKGROUND: The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma. METHODOLOGY/PRINCIPLE FINDINGS: Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein. CONCLUSIONS/SIGNIFICANCE: Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Transformada/patologia , Células Cultivadas , Primers do DNA , Proteínas de Drosophila/metabolismo , Imunofluorescência , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunoprecipitação , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Dados de Sequência Molecular , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/genética , Técnicas do Sistema de Duplo-Híbrido
9.
PLoS One ; 2(9): e833, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17786205

RESUMO

BACKGROUND: The MCM2-7 proteins are crucial components of the pre replication complex (preRC) in eukaryotes. Since they are significantly more abundant than other preRC components, we were interested in determining whether the entire cellular content was necessary for DNA replication in vivo. METHODOLOGY/PRINCIPLE FINDINGS: We performed a systematic depletion of the MCM proteins in Drosophila S2 cells using dsRNA-interference. Reducing MCM2-6 levels by >95-99% had no significant effect on cell cycle distribution or viability. Depletion of MCM7 however caused an S-phase arrest. MCM2-7 depletion produced no change in the number of replication forks as measured by PCNA loading. We also depleted MCM8. This caused a 30% reduction in fork number, but no significant effect on cell cycle distribution or viability. No additive effects were observed by co-depleting MCM8 and MCM5. CONCLUSIONS/SIGNIFICANCE: These studies suggest that, in agreement with what has previously been observed for Xenopus in vitro, not all of the cellular content of MCM2-6 proteins is needed for normal cell cycling. They also reveal an unexpected unique role for MCM7. Finally they suggest that MCM8 has a role in DNA replication in S2 cells.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/genética , Animais , Linhagem Celular , Mutação , Interferência de RNA
10.
J Cell Sci ; 118(Pt 11): 2451-9, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15923658

RESUMO

The Cdc6/18 protein has been mainly characterised for its role in the initiation of DNA replication. Several studies exist, however, which suggest that it may also have a role in controlling the G2/M transition. Here we present studies on the Drosophila Cdc6 (DmCdc6) protein that support this dual function for the protein. First we show that its location is consistent with a cellular role post replication initiation as it remains nuclear throughout G1, S and G2 phases. In addition, we have been able to reduce the level of DmCdc6 protein to nondetectable levels in S2 cells using RNAi. This causes DNA fragmentation and cell cycle abnormalities which have some similarities with phenotypes previously observed in yeasts and are consistent with the cells entering mitosis with incompletely replicated DNA. Finally, we have stably overexpressed the DmCdc6 protein to a high level in S2 cells. Despite a large excess of protein the effects on the S2 cells were minimal. We did, however, detect a slight stalling of the cells in the late S phase of the cell cycle, which further supports the proposal that DmCdc6 has a role in controlling the transition from the S to M phases of the cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Fase S/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Metáfase/genética , Metáfase/fisiologia , Dados de Sequência Molecular , Interferência de RNA/fisiologia , Fase S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...